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Abstract .   

Regenerative liquid propellant guns (RLPGs) have been studied for nun.yyMB.WJG 
firings almost always show large, high-frequency P^.«^^^ 
phenomenon, a fluid dynamics model of the combustion chamber/gun tube of an RLPG has been 
dev~ ffigh-freoTency osciUations are generated naturally by the physics ^ 
code. Dimensional analysis has been applied to the governing equations to furnish insight into 
the dynamic relationships among pressure, density, temperature, droplet size, etc     Ifte 

SÄiLiü.ese predictions. Tins agreement establishes the basis of self-sirmantv 
Z me physical processes (e.g., tradeoff between droplet size and burning rate) and, in addition, 
helps verify the computational model. 
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1. Introduction 

Pressure oscillations associated with combustion chamber instabilities in regenerative liquid 

propellant guns (RLPGs) have been studied for many years to attempt to identify sources of the 

instability and to develop techniques to mitigate the pressure excursions [1,2]. Over the past 

year and a half, the U.S. Army Research Laboratory (ARL) has been exploring the use of 

"dimensional analysis theory" to simplify the description of RLPG combustion processes and to 

provide a firm theoretical foundation for research. Dimensional analysis theory can significantly 

reduce the number of key variables that need to be analyzed in order to efficiently search for 

ways for mitigating combustion chamber instabilities. This report summarizes the results of the 

study. 

A diagram of the 30-mm concept VIC (6-C) RLPG is shown in Figure 1. The 

monopropellant in the liquid reservoir is prepressurized and located between the control piston 

and the injection piston. An igniter injects hot gas into the combustion chamber. As the 

chamber is pressurized, the control piston is pushed to the left, opening the injection orifice. The 

motion of the control piston depends on the balance of forces acting on the piston and includes 

the forces resulting from the pressure generated in the chamber, the retarding forces acting on the 

reservoir side of the piston, and the retarding forces associated with the damper assembly. The 

injection piston follows the control piston, injecting the propellant from the reservoir through the 

annular orifice. The combustion takes place in the combustion chamber, and the gas then flows 

into the gun tube. There is a large area change from the chamber to the tube. 

Gun firings have been simulated using a lumped parameter code RLPGUN [3-6]. The 

injected liquid is assumed to instantaneously break up into droplets and ignite. The droplet 

diameter is obtained from an experimental correlation involving the entrance velocity, gas 

density, liquid density, etc. [7]. Although the functional form appears relevant, it is necessary to 

multiply the droplet diameter obtained from this correlation by a constant, which depends on the 

specific injection system, to obtain the proper pressure rise rate. This constant may depend on 

droplet coalescence; liquid in the intact core; a droplet ignition delay; or other simplifications in 
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the breakup model, which do not fully represent the physical phenomena. The discrepancy could 

also be due to extrapolating data from low pressures in the experimental correlation to very high 

pressures with higher spray densities. However, using this modified correlation, good agreement 

with data taken in the tests has been obtained for a wide variety of RLPG firings. 

Essentially, all firings of RLPGs show large-magnitude, high-frequency pressure oscillations 

that cannot be modeled using a lumped parameter code. To consider spatial variations, a 

two-dimensional/three-dimensional (2-D/3-D) model LPOSC has been written for the 

combustion chamber/gun tube of an RLPG [8, 9]. The piston motions, injection rate, and 

injected droplet size are all obtained from a lumped parameter code simulation. The propellant 

combustion rate is simulated based on an engineering correlation. Due to lack of information 

about spray behavior under gun conditions, the very simple breakup model and combustion rate 

equation from the lumped parameter code have also been used in LPOSC. Pressure waves are 

generated naturally by the model, and reasonable comparison with experimental data has been 

demonstrated. 

Dimensional analysis is a mathematical tool that rigorously allows the most efficient way of 

establishing the minimal set of dimensionless functions that are required to analyze and interpret 

a physical problem such as the RLPG [10-13]. In addition, it permits the construction of 

experiments that are properly scaled. These scaled experiments can be used to efficiently 

organize and interpret the results of experiments and computer simulations that have already 

been performed. Additionally, they can be used to verify the internal consistency of 

mathematical models used in computer simulations [14]. 

We have taken the first several steps toward identifying the key parameter(s) responsible for 

combustion instabilities using the dimensional analysis approach. These findings have provided 

complementary insight that has been accrued by ARL and other organizations into the nature of 

combustion instabilities. For example, pressure oscillations do not scale between the 30-mm and 

155-mm guns. Dimensional analysis provides insight into the physical reasons for the 

differences.  As a natural consequence of our studies, we have also used the scaling aspect of 



dimensional analysis theory to verify the mathematical correctness of gas and liquid transport 

developed in the ARL models. 

2. Dimensional Analysis Considerations 

2.1 Basic Concepts. Dimensional analysis has probably been used by nearly all scientists at 

one point or another in conjunction with simplifying a differential equation. Consider for 

example, the differential equation for the velocity, v, 

m— + ßv3=0, (1) 
dt 

with the initial condition, v(t = 0) = v0. The analytical solution of equation (1) is, of course 

trivial, but, if we could not solve it in closed form, we would write the solution as 

v = v(m,ß,v0,t). (2) 

As observed, v appears to be a function of three parameters and time. Introducing the 

dimensionless velocity and time variables, y = v/v0 and x = ^v2
0t/m, respectively, reduces 

equation (2) to 

^ + y3=0, 0) 
dx 

with initial condition, y = l.   The universal solution of equation (3) is y = y(x).    A single 

solution describes the entire parameter space. 

Comparison of equations (1) and (3) indicates the significant reduction in dimensionality that 

is possible by making appropriate substitutions to render the equations dimensionless. However, 
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is it possible to reduce dimensionality if we do not know the differential equations but do know 

the input parameters and variables? The answer is, "Yes," and it is made possible by the classic 

work of Buckingham [10] that was developed in 1915. Buckingham showed how to reduce the 

number of parameters and variables; he called the reduced set "II-functions." 

The concepts of dimensional analysis are routinely used to improve our understanding of 

complex problems in the field of fluid mechanics and to organize the experimental data in the 

most efficient way (e.g., the use of Reynolds number). In some instances, the analytical form of 

the solution has been found from purely dimensional arguments (e.g., the blast wave equation 

[11]). A review of these formal methods is rendered in the next section. 

We have explored the use of Buckingham's theorem in selected subsets of the liquid rocket 

and RLPG problems (see sections 3.2 and 3.3). The approach generated too many Il-functions 

to be of any short-term use. We were, however, able to mathematically demonstrate the 

equivalence between this approach and the direct approach of working with the differential 

equations. Despite its lack of practical utility in this study, the formal theory may be useful in 

future investigations. 

2.2 Review of Dimensional Analysis and Self-Similarity. The basis of Buckingham's 

IT-theorem is summarized as follows. Assume a system can be described by "n" quantities, 

which can either be physical constants (e.g., universal gas constant), independent variables (e.g., 

time), or dependent variables (e.g., velocity, temperature), and "m" dimensions. The dimensions 

used in fluid mechanics that are relevant to our study are mass (M), length (L), time (T), and 

temperature (0). 

Now, let ul ,u2 ,u3...un denote the aforementioned n quantities. The solution of the problem 

yields a functional relationship of the form 

F(u1,u2,u3...un) = 0v (4) 



If ni,n2,n3...etc, are dimensionless groupings of the u's, Buckingham's theorem proves that a 

relationship of the form 

f(n1,n2,n3...nn_m)=o (5) 

can be derived. The dimensionality of the problem has, in principle, been reduced from n to 

n - m. The variables of the problem are the n - m II-functions. The reduction from n to n - m 

variables can be very significant if n is not too large. For example, if n = 6 and m = 4, the 

problem is reduced to only two variables. In such cases, the solution may be accomplished 

analytically or by the solution of two differential equations. On the other hand, if n = 15 and 

m = 4, the number of variables is 11 and not much is gained. 

Equation (5) represents n - m equations in n unknowns. The solution of such a system is 

achieved using established matrix techniques of linear algebra and leads to n - m relationships 

between the n unknowns. For tutorial, as well as practical purposes, we dispense with the matrix 

formalism and present the methodology based on the straightforward procedure developed by 

Streeter [13] for determining the u's. 

• Step 1: Select m of the u's, which collectively contain m of the dimensions. For example, 

if M, L, and T are the dimensions, we must select three of the u's that collectively contain 

M, L, and T. Therefore m = 3 in this case. 

• Step 2: Label the u's in the manner consistent with step 1. Using m = 3 as an example, we 

select upu2, and u3to be the three quantities that collectively contain the dimensions M, L, 

and T. We then label u4,u5...un as the remaining variables or parameters. 

• Step 3: The n - 3 II-functions are then constructed as follows: 



nn.3=u^u^u3
z-un. (6) 

•   Step 4:   The final step in the method is to express the u's in their dimensions and then 

determine the x's, y's, and z's so that all the u's are dimensionless. 

The aforementioned procedure is most readily explained by the example of a point explosion 

in air. This is the classic problem of a point explosion that has formed the foundation of many 

basic concepts of shock wave theory. An extensive treatise on the subject from the dimensional 

viewpoint can be found in Sedov's book [11]. It is presented here to show the recipe for 

constructing the dimensionless Il-functions. 

For the point explosion in air, there are four variables: the radius of the shock wave, R; the 

density of the ambient air, p; the time after the explosion, t; and the energy of the detonation, E. 

The dimensions of these quantities are 

R: L, 

p: ML"3, 

• t: T, and 

• E: MI?T2. 



The selection of variables is 

ui = R, u2 = t, u3 = p, and u4 = E. (7) 

Because there are only four variables, there is only one II-function. It is determined by 

inserting equation (7) into equation (6) using the dimensionality of the variables. We have 

III = Rx ty pz E = Lx Ty (Mz L_3z) (Ml^r2). (8) 

Setting the exponents of L, T, and M equal to 0 gives the following coupled set of equations: 

x-3z + 2 = 0,y-2 = 0,andz + l=0. (9) 

The solution is y = 2, z = -1, and x = -5. Substituting the result into equation (8) then gives the 

dimensionless function 

n^R-Yp-'E. (10) 

In section 3.3, we construct sets of II-functions for the lumped parameter model of the RLPG 

using the foregoing technique. 

2.3 Differential Equation Approach to Scaling of Burning Rate. In section 2.1, we have 

shown how to construct a dimensionless differential equation from a dimensional equation by 

recognizing and using the inherent dimensionality of obvious physical quantities. This method is 

not only useful but is frequently the preferred method of constructing dimensionless equations 

that exhibit universal behavior. The major caveat in using this approach is that our mathematical 

model must be correct. If the physical description is not correctly described by the equations, 

erroneous scaling relations and predictions are possible. 



The formal theory of dimensional analysis does not require a knowledge of the systems' 

differential or integral equations but only that we know what variables and parameters are 

involved. On the other hand, it provides insight into the relationship between the variables and 

parameters. Combined with a physical model of a system, dimensional analysis can provide 

guidance and proper scaling for experiments and simulations. 

We call the method of constructing dimensionless equations from the original equations the 

"direct assault approach." The purpose of the analytical exercise of this section is to show how 

this method is used to explore the types of dimensionless variables that arise with the liquid 

propellant burning-rate expression. The reduction in the dimensionality of the problem and the 

ensuing scaling relationship are developed. 

In this section, the combustion process is examined. A simplified model problem is 

considered. In this model, the volume, V, is constant. There are initially a specified number of 

droplets, all with the same diameter. The total mass in the system (gas plus liquid) is constant. 

The dynamic process is the conversion of the liquid into gas, releasing energy and increasing the 

pressure in the volume. The number of droplets remains constant as the droplets shrink in size. 

Using the assumption that the total mass is constant, there is a relationship between the gas 

density and the droplet size. The burn rate is a function of the pressure. The process begins at 

t = 0. The initial conditions are the volume of the system, the diameter and number of droplets, 

and the density and temperature of the gas. The initial pressure is obtained from the Noble-Abel 

equation of state. In mathematical terms, the droplets are allowed to reach zero mass. This 

allows the total number of droplets to be conserved in the theoretical model. 

The density is the average gas density per unit volume, that is, the gas mass divided by the 

volume. However, we must account for the fact that, when there are droplets within the volume, 

the actual gas density, pG, will be much higher. We now calculate this increase. The 21 

"primary" parameters and variables are defined in Table 1. What we mean by primary is that 

any other parameters and variables can be expressed in terms of this primary set. 



Table 1. Primary Set of Parameters and Variables 

Parameters/Variables 

V 

Po 

Po 

N 

TDO 

TD 

R 

TG 

TGO 

eL 

B 

Cn = Cm + R 

Cv = PGQI 

y = . 

PL 

Definition 

Volume 

Covolume 

Initial Gas Pressure 

Initial Average Gas Density 

Instantaneous Gas Pressure 

Instantaneous Average Gas Density 

Number of Droplets Contained in Volume, V (Remains Constant) 

Initial Radius of droplets 

Instantaneous Radius of Droplets 

Universal Gas Constant 

Gas Temperature 

Initial Gas Temperature 

Chemical Energy Per Unit Mass in Liquid 

Burning-Rate Pre-Exponential 

Burning-Rate Exponential 

Specific Heat Per Unit Mass for Gas at Constant Volume 

Specific Heat Per Unit Mass for Gas at Constant Pressure 

Specific Heat Per Unit Volume 

Ratio of Specific Heats 

Intrinsic Density of Liquid 

Time 

Using the foregoing definitions, we have 

C   =-L- 
P    Y_i 

R (ID 

and 
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Cm=-^-. (12) 
7-1 

The internal energy per unit mass for the gas is 

u=CmTG, (13) 

and the enthalpy per unit mass for the gas is 

h = u + -2- = u + RTG +pb = (Cm +R)TG +pb = Cp +pb. (14) 
PG 

There are two equivalent forms for the equation of state: 

PGRTG 

P = fV-^ (15a) 

and 

Po=      P    . • (15b) 
RTG + pb 

We must account for the fact that, when there are droplets within the volume, the actual gas 

density, pG, will be much higher. In Table 2, we show the relationship between p and pG with 

the help of additional parameters and variables that are derived from the primary set. 
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Table 2. Additional Parameters and Variables Derived From the Primary Set 

Parameters/Variables Definition 

N 
n = — 

V 
Number Density of Droplets (Remains Constant) 

4TC 3 Instantaneous Volume of Droplet 

4TC 3 
"^DO ~   o   rD0 Initial Volume of Droplet 

TiDO = nVD0 
Initial Fraction of Volume Occupied by the Liquid 

I-'HDO Initial Fraction of Volume Occupied by the Gas 

t\r>=™D 
Instantaneous Fraction of Volume Occupied by the Liquid 

1-T1D 
Instantaneous Fraction of Volume Occupied by the Gas 

P    =    Po 

1-1DO 

Initial True Gas Density 

<>* = /„ 1-T1D 

Instantaneous True Gas Density 

mD0 = PL^DO 
Initial Mass of Droplet 

mD=pLvD Instantaneous Mass of Droplet 

ML0 = NmD0 Initial Total Mass of Liquid 

ML = NmD Instantaneous Total Mass of Liquid 

MGO=pGO(l-T|Do)V Initial Mass of Gas 

MG=pG(l-TlD)V Instantaneous Mass of Gas 

M = ML0+MG0=ML+MG Total Mass in System = Constant 

The first step in the analysis is to establish the relationship between the dimensionless droplet 

size and the dimensionless true gas density. The starting point is the mass conservation equation: 

M = ML0+MGO=ML+MG (16) 

and 

NmD0+pG0(l-TiD0)V = NmD+pG(l-TlD)V (17) 

12 



Dividing by the volume, V, and making other substitutions gives 

npLuD0+pG0(l-nvD0) = npLvD+pG(l-nvD). (18) 

We now introduce the following dimensionless variables 

(19) .   ^D    _ r3 

X
D0 UDO 

v=p° ? 

'GO 

(20) 

and 

go=^- (2D 
PL 

Equation (18) at first becomes 

TlD0(l-x) + goQ-TlDo) = ygo(l-XTlDo), (22) 

which then gives 

'tlDo(1-x) + go(1-'nDo)- (23) 

go^-^Do) 

Here, T|D0 and g0 are constants that depend only on the initial conditions. For brevity, we write 

y = y(x,g0,
,nD0). (24) 

13 



The burning-rate equation is 

rD=rD0-AjpB(t')dt\ (25) 
o 

Defining a dimensionless radius by the equation 

X = ^- (26) 
rD0 

and inserting the result into equation (25) gives 

Jt = l-<Kt), (27) 

where 

We then have 

and 

<Kt) = — }pB(t*)df. (28) 
rD0 0 

x=^ = lL = X3 (29) 
^DO        rD0 

Bm=£D0.#=_£DO.dA (30) 
y w    A dt        A dt ' 

14 



Using equation (15) applied for the initial conditions gives the following form of the 

dimensionless equation of state: 

P _y(*,g0,'nDo)(l-bpGO) 

Po      l-y(x,g0^Do)bpGo 

f T    \ 

T ^ 1G0 

_yU,g0,
,nDo)(i-ao) 

i-yCx.go^Do^o 

(T ^ 

T ^ 1G0 
(3D 

where 

a0=bp GO' (32) 

In order to define a dimensionless time and determine the dimensionless time dependence of 

the pressure and other quantities, it is necessary to express (TG/TG0) in terms of the 

dimensionless droplet radius. The required expression is now developed. 

When volume of droplet changes from uD0 to vD, the total amount of energy liberated by all 

the droplets is 

E = eLpLN(vD0-uD) = eLpLN'UD0(l-x). (33) 

where eL is the propellant chemical energy per unit mass. 

The temperature in the gas is computed from the equation 

AT   =T -T    =     E     =eLPLN^po(l-x) 
G      G      G0    CmMG CmMG 

(34) 

where E is given by equation (33) and the gas mass is given by 

MG=pG(l-TiD)V. (35) 

15 



Using the equation 

T|D = nvD = nx-uD0 = XT|DO 

and the result of combining equations (20) and (23) gives 

1U         n      T1nn(l-x) + g0(l-'nDo)a )V 
MG=PG° g^W( ^ 

(36) 

_    vTinnq-x)+g0a-TiD0) (37) 
- PGO v 

60 

Inserting equation (37) into equation (34), using equation (21), and defining a new 

dimensionless quantity, 

ßo=7^-> (38) 
CmT0 

then gives 

Jo_ = 1 + _ ßoT)D,(l-x) .    i + KT(ß0,TiD0,g0,l-x), (39) 
TGO      (tiDO(i-x)+go(i-,nDo)) 

where 

K ßoTlDo(1~x) (40) 
T   (nDOa-x)+g0(

1-TiDo))' 

The first step in determining a time-dependent equation for the pressure is obtained by 

inserting equation (40) into equation (31). We have 

16 



J2.= f-«;^Xl-a.)& )}- (41) 
Po    i-yCx.go^Do)^ 

Equation (41) shows that the time dependence of the pressure is determined by the time 

dependence of the dimensionless radius, X = x1/3; that is, p(t) is an implicit function of time 

through the relationship p(t) = p(?i(t)). The other factors in equation (41), go^ßo^DO' anda0, 

are constants. 

The explicit time dependence of the pressure is determined from equation (30). We write 

<a_   ApB    Ap0
B yBq3,g0,TiDO)a-a0)

B u , v 3* 
— - 7 : «-y + ^TCPo'^DO'go'1-'1-)) • 
at        rD0       rD0    (l-y(X3,g0,r)D0)a0>r 

Introducing the dimensionless time 

where 

then gives the total dimensionless equation 

where 

17 

(42) 

T = -^, (43) 

TD0=^V, (44) 
Apo 

^ = -F(X,Ö0). (45) dx 



F(k,Q0)=\ ft'8^"*1-^  {l + KT(^D0,g0,l-^J (46) 
(l-y(A.3,g0,r|D0)a0J 

and Q0 is the set of dimensionless parameters:  a0 ,r|D0,g0, and ß0. 

The initial conditions are k = lat T = 0. Because F > 0, Xwill eventually go to 0 within a 

finite time, Tend. At this terminal time, all the droplets will have been converted to gas. Tend is 

determined by integrating equation (45) taken between the limits of k = 1 to k = 0: 

T    = f     dV (47) end   WA) 

Once k(x) is obtained, we determine p(x) from equation (30) and (41). 

pB(T) = .hi. & = _5aLf^E = PO
B
F(MT)A ) (48) 

A dt        A dx dt 

and 

P(J2= y a3,g0,TiDoXl-a0) ft+KTflo>TlDOt8o>i-A,»)). (49) 
Po      (i-ya3,g0,T|Do)a0J 

In summary, the use of dimensional analysis, combined with specific knowledge of the 

differential equations that define the system, has reduced the solution of a complicated 

burning-rate problem to the evaluation of a single integral. Only the following four 

dimensionless parameters, that is, 

nD0 =nuD0, g0 =£S2., a0 =bpG0,and ß0 = 
eL 

C Tn PL ^m^O 

18 



are required to distinguish one solution from another. Originally, 21 parameters were used to set 

up the problem. 

3. Lumped Parameter Model for RLPG 

3.1 Scaling of Differential Equations. The purpose of this section is to use the direct 

assault technique of dimensional analysis theory in order to gain some insight into how 

dimensionless parameters might be useful for understanding pressure oscillations caused by 

combustion pressure instabilities. The model we have selected here is a simplification of the 

lumped parameter RLPG configuration originally developed by Coffee [3]. This model is 

physically and mathematically not capable of representing pressure oscillations. Its primary use 

in this study is to obtain a preliminary assessment of the potential gains in simplification using 

dimensional analysis theory. Pressure oscillations are considered in section 4. 

The basic notion was that, if dimensional analysis was not useful in predicting scaling 

relationships in this major simplification of an RLPG system, it was not likely to work in a more 

realistic model. Fortunately, scaling relationships derived for this model were confirmed by 

numerical analyses using the ARL code. These test cases are presented at the end of this section. 

We show that a combination of analytical techniques, combined with the direct assault on the 

resulting equations, is very useful. The mathematical foundation for the study of pressure 

oscillations makes three simplifications to Coffee's model: the piston is weightless, the liquid 

propellant is incompressible, and the projectile is motionless. The first two assumptions were 

found quite acceptable using numerical evaluations of previous studies. The third assumption is 

equivalent to assuming an infinitely heavy projectile. 

The physical model is similar to that shown in Figure 2, an in-line shower-head RLPG [3]. 

In this diagram, A; is the area of the piston on the liquid side, A3 is the area of the piston on the 

chamber side, and Av is the area of the vents that permit propellant to flow from its reservoir 

19 
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into the combustion chamber. V3 is the time-dependent volume of the combustion chamber, and 

V, is the time-dependent volume of the propellant reservoir. 

Coffee [3] has developed a complete set of equations that describes the system in the absence 

of the three simplifications made here. We do not duplicate his analysis in detail. We do, 

however, include a limited number of equations that have led us to the final result. 

The net result of our analysis is the development of the dimensionless differential equations, 

equations (72) and (73). These equations allow us to make scaling predictions that include time 

behavior based on dimensional analysis. 

As the pressure in the chamber increases, the piston is pushed to the left. If Vio is the initial 

volume of the liquid propellant chamber, the volume, Vi, at time t is given by 

V^Vio-SpsAi. (50) 

Sps is the displacement from the initial condition, measured positive when moving to the left. 

It is related to the piston velocity, vps, via the equation 

^■v 

vps is also positive when the motion is to the left. 

When the piston is weightless, there is no net force on the piston. The liquid and gas forces 

on the piston must be balanced, giving the equation 

P3(A3-Av) = pi(Ai-Av). (52) 

21 



Here, p3 is the gas pressure in the chamber and px is the liquid pressure in the reservoir. Liquid 

enters the chamber from the reservoir through the vents. Equation (52) immediately provides the 

relationship between the differential pressure and the pressure in the combustion chamber. We 

have 

Pl-P3=T1P3> (53) 

where 

i^V^L. (54) 
Aj - Av 

Since A3-AV>A!-AV, the pressure in the reservoir is greater than that of the chamber and 

liquid will flow into the chamber. 

The time dependence of the mass flow rate, rh, into the chamber is controlled only by the 

time dependence of p3. This is easily shown starting with the equation 

m = CdpLAvv3, (55) 

where Cdis the discharge coefficient and v3is the velocity of the liquid as it enters the chamber. 

The specific value of Cd is inconsequential for our analysis, and, for this reason, it is set equal 

to 1.0. Equation (55) then becomes 

m = pLAvv3, (56) 

where v, is determined from Bernoulli's law for streamline flow. The general expression is 
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v3
2=vf + 2(Pl    P3). (57) 

PL 

Assuming that \l = 0 and inserting the resulting expression into equation (56) gives 

rh = Av>/2pL(p1-p3)=AvV2pLTip3 =yjj^, (58) 

where 

y = Avfips\- (59) 

Using equation (58) in combination with the assumption of ^compressibility of the liquid 

enables us to relate the mass flow rate to the velocity of the piston. The decrease in volume of 

the reservoir is 

^ = -vp!A, (60) 

With v sAipL as the mass loss in the reservoir per unit time, it must equal the mass flow rate 

into the chamber. This gives 

vpsA1=Avv3. (61) 

The temporal relationship between the mass density, p3, and volume, V3, within the 

chamber is derived in terms of the initial conditions from equations (58) to (61). The increase in 

chamber volume is given by 

dV, 

dt 
3=vpsA3=WP3> (62) 
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where 

A3AV   /2n 

Ai   "VPL 

(63) 

The increase in total mass (equation [58]) of gas in the chamber, M3, is given by 

dM3 

dt ■ = m = vvP (64) 

From equations (62) and (64), we obtain 

dV3      a 

dM3    pL 

(65) 

where 

Ax 
(66) 

Integrating equation (65) between the initial conditions (denoted by the additional subscript "0") 

and the state at a later time gives 

\   ap3oN 

V =V   - y3        v30   / 

1- 
ap3 

I      PL ) 

(67) 

Using equation (67) in conjunction with the Noble-Abel equation of state, 
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p3 = 
_(7-l)p3CvT3 

(l-bp3) 
(68) 

and the energy balance equation derived by Coffee [3], 

r,  dT3 3lnp3 

3lnT, 

m (. , d+-n)P3 
eL + -C T3-bp3 

m 
(69) 

reduces the solution of the problem to two simultaneous time-dependent equations for the 

pressure and density. The details are tedious but straightforward. From these two equations, we 

can derive two equivalent dimensionless equations. The variables in these dimensionless 

equations are the dimensionless density, p, and the dimensionless pressure, p. For this transient 

problem, it is convenient to define 

p3 

P30 
(70) 

and 

P3 = 
'30 

The derived time-dependent equations are 

(71) 

dp3rr(l-ßp3)
2 

dt (1-ß) 
(72) 

and 
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dp3 7P3       dp3     (l-ß^XT-lXht-hs)^ 
dt ~p3(l-kp3) dt + (l-ß)(l-kp3) 

Here, t is a dimensionless time and is defined by the equation 

(73) 

~    t 
t = -, 

x 
(74) 

where x is a characteristic time constant for the system; it is defined by the equation 

I=  IPSOPL (V^)
A

V ^ 

t       V    P30 V30 

All the variables and parameters in equations (72) and (73) are dimensionless. They are 

• h1=6i+gp3, 

p3(7-kp3) 

(75) 

h3=- 
P3(Y-D 

^30 

PL 

_ A3 -Ax __Aj__ 

' ^"Aj-A.'^A/ 

• k = bp3o, and 

26 



ß = AlPll, where 
Ai PL 

2   _ P30 

P30 
C30 

A close examination of equation (73) and the associated definition shows that the time 

behavior for the dimensionless pressure and density as a function of dimensionless time are 

function of only five dimensionless parameters. These parameters form the set, Q, where 

n=<bpM,^>,^>. (76) 
Al      Pi       Al      C30 

Systems that have the same values of the five dimensionless constants in equation (76) will 

exhibit identical time behavior as a function of dimensionless time, t. If systems have the same 

values of equation (76) but differ in the characteristic time constant, x, their motion in real time 

will be self-similar or, simply, similar; that is, the motion will look identical but in different time 

scales. 

We have numerically confirmed the self-similarity predictions of equations (72) and (73) for 

a variety of test cases using the ARL computer model The success of this analysis paved the 

way for the study of the more sophisticated Sandia National Laboratories (SNL) test fixture 

discussed in section 4. 

3.2 Formal Dimensional Analysis Approach. Table 3 lists the variables, parameters, and 

dimensionality for the model described in section 3.1. For convenience in constructing the 

n-functions, we have divided the variables in classes that contain the same dimensions. It is of 

interest to see how the formal theory of dimensional analysis, based on Buckingham's 
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Table 3. Variables, Parameters, and Dimensionality for the Shower-Head RLPG 
Model Described in Section 3.1 

Symbol Definition Dimensions Index Class 

Time 

t Time T Ul Basis 

Areas 

Ai Piston Area on Liquid Side L2 u2 Basis 

A3 Piston Area on Combustion Side L2 u5 1 

Av Vent Area L2 
U6 1 

Volumes 

V30 Initial Volume of Chamber L3 u7 2 

v3 Instantaneous Volume of Chamber L3 u8 2 

Density Related 

Pi Liquid Density ML-3 u9 3 

P30 Initial Gas Density ML-3 
UlO 3 

P3 Instantaneous Gas Density ML"3 Uli 3 

b Covolume M^L3 u3 Basis 

Pressures 

Pi Fluid Pressure ML_1T2 
U12 4 

P30 Instantaneous Pressure in Chamber ML_1,T2 
Ul3 4 

P3 Initial Pressure in Chamber ML_1T2 
U14 4 

Velocities 

v3 Propellant Velocity Into Chamber LT"1 
U15 5 

Vps Piston Velocity LT1 
U16 5 

Energetic ;s 

cP Specific Heat at Constant Pressure L2T2e_1 
U17 6 

6c Chamber Temperature e U4 Basis 

eL Propellant Energy Per Unit Mass L2T2 
Ul8 7 
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n-theorem, determines the dimensionless variables. In the next section, we show the 

equivalence between the two methods. 

For a system involving "m" dimensions and a total of "n" variables, the II-functions are 

labeled and constructed according to the following scheme: 

n „_m = u i"-m u 2n"m u y3
n-m u 4n-~ u n;   n > m. (77) 

By expressing the un in terms of their dimensions, we determine the nn_m by requiring the 

product of equation (77) to be nondimensional. Those un that have the same dimensions will 

have the same values of wn_m, xn_m, y n-m> and zn_m. 

In our case, there are m = four dimensions, M, L, T, and 0, and a total of n=18 

variables/parameters. There will then be 18-4=14 II-functions. The basis functions are 

• ui = t, 

• u2 = Ai, 

• U3 = b, and 

• u4 = 0C. 

Working through the procedure developed in section 2.2, we determine the 14 II-functions. 

• Class 1: 

(1)   n, = tWl A*'by'9*'A3 = Tw' L2x>M~y'L"3y'9Z'L2 = ^- and 
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(2)   n2 = tWlAx'byi0ZlAv =TW2L2x2M_y2L-3y20ZjL2 =-*-,where 

w 1=w2=0;x1 = x2=-l;y1 = y2=0;z1 = z2=0. 

Class 2: 

(3) n3 = tw'AX3by30Z3V3O =TW3L2x3M-y3L-3y3eZ3L3 = -f^ and 

V 
(4) n4 =tW4AX4by40Z4V3 = TW4L2x4M_y4L3y40Z4L3 = -1}r, where 

Ai 

W = w4=0;x3 = x4=-3/2;y3 = y4=0;z3 = z4=0. 

FoUowing the same procedure, we state the results for the remaining IT-functions in simpler 

form by deleting references to the values for w, x, y, and z. 

• Class 3 

(5) n5 = twAxby0zPL = TwL2xM-yL3yezML"3 = bpL, 

(6) n6 = twAxbyGzp30 = TwL2xM-yL3yezML"3 = bp30, and 

(7) n7 = tw Axby0c
zp3 = TwL2xM-yL3y6zML"3 = bp3. 

• Class 4: 

(8) n8 = twAxby6z
Pl = TwL2xM-yL3y9zML-1T-2 = tX bPi> 

(9) n9 = twAxby9zp30 = TwL2xM-yL3yezML"1T-2 = t'A^bpso. ™d 

(10) ni0 =twAxby0zp3 =TwL2xM-yL3y0zML"IT-2 =t2A"1bp3. 
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Class 5: 

(11) nn =twA^by0c
zv3 =TwL2xM-yL3y0zLT"1 =tA"1/2v3 and 

(12) ni2 = twAxby0zvps =TwL2xM-yL3yezLT"1 = tA[1/2vps. 

• Class 6: 

(13) II13 =twAxby0c
zCp =TwL2xM-yL3y0zL2T-20-1 =t2A~1ecCp. 

• Class 7: 

(14) ni4 =twAxby0c
zeL =TwL2xM-yL3y0zL4T"4 =t2A-!eL. 

The general solution to problem is given by 

F(n1,n2...n13,n14) = o. (78) 

Because of the large number of II-functions and their cumbersome forms, equation (78) is not 

especially useful. It is necessary to reduce both the number and complexity of the II-functions. 

We now discuss methods for accomplishing this. 

It will be recalled that, in the direct assault approach of the previous section, we ended up 

with two ordinary time dependent differential equations for the dimensionless pressure, 

p3 = p3 /p30, and the dimensionless density, p3 = p3 /p30. Without even solving equations (72) 

and (73) of the previous section, we can write their solutions in the forms 

Ps^^Pso^1'—'T^ (?9) 
X Aj     px     Aj    C30 
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and 

A  - xu (1 bo    Al Eil ^x £kA (80) 

with Wp and % as functions of their respective arguments. 

It is recalled that equations (72) and (73) are two coupled equations. It is possible to solve 

these equations in quadrature by initially formulating the single differential equation: 

Ää. = f(M9,a). (81> dp3 

The result of the foregoing discussion is that the solution of equations (72) and (73) can be 

expressed in the form 

F(p3,P3,bP3oA^,^% = 0, (82) 
Al      Pi      Al     C30 

where F is a function of the seven variables of equation (82). 

By comparing equations (78) and (82), we immediately see that the former set contains twice 

the number of variables than the latter. This condition resulted by solving some of the algebraic 

equations in the system. That is, we were able to eliminate some of the variables altogether (e.g., 

temperature, piston velocity, etc.) by expressing them in terms of other variables. It is apparent 

that, if we are able to formulate all the equations to begin with, as we can in this simple problem, 

there is probably no need, or very limited need, for using formal dimensional analysis. 

3.3 Equivalence Between Approaches. It is of interest to compare equation (82) with the 

14 n-functions previously generated. For this, we need to recall that the TI-functions are 

members of a group, and satisfy the following group properties. 
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• If üj is a member of the group, so is 11°, where n is any positive or negative real number. 

• If rii and rij are members of the group so is 11° 11™, where n and m are any positive or 

negative real numbers. 

Thus, there is nothing unique about the 14 previously generated Il-functions. Using the two 

group properties just listed, a completely different set of Il-functions can be constructed, which 

is better suited to physical interpretation. For example, the pervasive appearance of time, t, in so 

many of the Il-functions does not enhance one's physical insight into the nature of the solution. 

The dependence of so many of the Il-functions on t is easily rectified using the group properties. 

For now, all we want to do is to show how equation (82) can be expressed in terms of a 

modified subset of the 14 original Il-functions using the group properties. The first few steps are 

easy to see: 

p3= — = —-, (8J) 
p30     119 

41 = ni, (84) 

4^ = n2, (85) 
A! 

bp30=n6, (86) 

p3o = n6 

Pi    n5 

(87) 

and 
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A __£L._ILL 
PSO        n6 

Now, consider the term eL /c30. We express c30 as follows: 

,2    H30 _     n9 

(88) 

C30 p30"tVn6. (89) 

Dividing IT14 by (II )   gives 

eL   _ "^14^6 (90) 
c2      n »-30 iA9 

Since there is nothing unique about any of the Ili, the ratios of II-functions depicted in 

equations (87) to (90) are just as valid as the original set of II-functions. We now define a new 

set of II-functions (using a "bar" over the II symbol) in terms of the initial set: 

n^Ü!,     n2=n2,     n3=n3,     n4 = n4,     ns=-*-, n 5 

n6=n6,     n7=^,    n8=n8,     n9=n9,     n10=^., 

nu=n11(    n12=n12,    n13=n13,    II14=ML. (9i) 

Equation (82) now becomes 

p(n1,n2,n5,n6,n7,n10,n14) = o. (92) 

34 



The foregoing equation or its equivalent, equation (82), is actually easier to use than it would 

appear. The reason for this is that some of then-functions are actually constants, or parameters 

that do not change much. For example, II5 and n6are expected to be nearly constant under most 

conditions.   If the combustion chamber is designed to retain constant area ratios, then III and 

n2 are constants and equation (82) becomes 

F(p3,9s^) = 0. (93) 
C30 

Equation (93) shows that, under the aforementioned conditions, the relationship between 

pressure and density depends only on the single dimensionless variable, eL lc\0. The time scale 

associated with the behavior of pressure and density is determined from equations (72) and (73). 

For systems where there is high confidence that the physics have been accurately modeled, 

the direct assault approach is probably the best method for determining the significant 

dimensionless variables. On the other hand, when the equations that describe the system are not 

well defined, the formal theory can provide guidance in deducing significant dimensionless 

parameters. The virtue of being able to solve a portion of the problem is the reduction of the 

number of II-functions. 

4. Dimensional Analysis for a Test Fixture 

4.1 Physical Model. A simplified problem has been chosen. A test fixture, Figure 3, was 

developed at SNL to study pressure oscillations [15]. The combustion chamber in the fixture is 

basically a cylinder with a 1-in radius. Liquid propellant is injected through a circular opening 

on the center line at the left of the chamber by a differential piston. Hot gas, and possibly some 

liquid, flow through a converging orifice at the right into atmospheric pressure. Pressure 

oscillations are quickly established in the chamber. Normally, there is a single, clear frequency 
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corresponding to the first radial mode of the cylinder.   This system is very similar to a liquid 

propellant rocket. 

The numerical model is simplified as much as possible for this exercise. The chamber is 

assumed to be exactly a cylinder, ignoring the shape of the converging nozzle. The liquid is 

injected at a steady rate. The liquid instantaneously breaks up into droplets of a specified size 

and ignites. Combustion occurs according to a pressure-dependent burn rate, ApB. The liquid 

and gas have the same velocity and the same pressure at any point. Viscosity and turbulence are 

ignored. Heat transfer to the liquid is ignored. The liquid is assumed to be incompressible 

(treated as compressible in the code). The outflow is computed assuming choked flow. At all 

points within the fixture, the gas and liquid are assumed to move with the same velocity. The 

numerical simulations quickly reach pseudosteady state. The mean pressure and outflow rate are 

constant, but there are oscillations about the mean. For the dimensional analysis, the outflow 

rate is considered constant and equal to the inflow rate. 

4.2 Eulerian Equations. In this section, the basic continuity, momentum, and energy 

equations are derived for the Sandia fixture. For mathematical simplicity, the equations are 

rendered in Cartesian coordinates. In actuality, the system is described best in cylindrical 

coordinates. The scaling relationships and insights are the same for both coordinate systems. 

There are a large number of variables and parameters in the mathematical model for the 

Sandia fixture. All of these variables and parameters are defined in the List of Symbols. To 

facilitate the presentation, some of them are also defined in this section and in section 4.3. 

The continuity equation for the gas is 

dt dx dy 
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The right-hand side of equation (94) is the volumetric increase in gas mass density by burning of 

the liquid drops. 

Because the gas and droplets are assumed to move with the same velocity, we can use a 

volume average mass density for the gas plus droplets. This is defined by 

PT=P + PD> (95) 

where p is the mass density of the gas (gas mass divided by volume) and pD is the mass density 

of the droplets (liquid mass divided by volume). 

The two momentum equations are 

d(PTVx) , d(PTVx) , dCpTVyVx) _    » 
dt 3x By 3x 

(96) 

and 

a(pTVY) , ^(PTVXVY) I 3(PTVY)_   fr> 
3t 3x dy 3y 

(97) 

The energy equation for the gas is 

_ UpV  +pu 
A f   -    1 
+ V« pV^V+h) — eL^D-»G ' (98) 

where 

u = C_T = internal energy per unit mass, (99) 
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h = u + — = enthalpy per unit mass, (100) 

and 

V2=V^+V^. (101) 

The pressure is related to the density and temperature via the equation of state, 

l-bpG 

where pG is the true gas density. It is given by 

Po--^, (102b) 

where n is the number density of the liquid drops. 

We now consider the droplet dynamics. Because equations (95) to (98) describe the 

gas-plus-droplet system, there is no additional momentum equation for the droplets. We assume 

that heat transfer between droplets and gas is neglected and that droplets supply energy to the gas 

when they convert to gas. These assumptions preclude the need for an energy balance for the 

droplets. The only relevant equation for the droplets is the mass balance equation. This equation 

is given by 

d(PD) , 3(PDVX) , d(pDVY)_   «       _   47mfr2_ n(™ —Z— + ^ + 5  -3D->G  ~ -47tpLrDrDn » (1Uj) dt dx dy 
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where 

pD=npLvD=npLyr£ (104) 

and 

rD=ApB. (105) 

Dividing both sides of equation (103) by pL and using equation (105) gives 

9(iirg) | 3(nrX) , 3(^X2 —?Ar
Br> (106) 

3t dx By 

Equation (106) is a partial differential equation in two dependent variables: n and rD. This, 

however, can be reduced to a single partial differential equation in the single variable, rD, by 

recognizing that the continuity equation for the number density is 

9(n) | 9(nVx) , d(nVY) _Q (107) 

9t        3x dy 

That is to say, even though the mass of a droplet is always decreasing, the droplet always 

exists—even though, in the limiting case, it may have zero mass. Differentiating the left-hand 

side of equation (106) and using equation (107) gives the following Eulerian description of the 

droplet radius: 

i(£o)+v ^+vY-^ = -ApB. (108) 
9t 3x dy 

Equation (108) applies only for rD > 0. 
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In summary, we have a set of eight unknowns, p, pT, Vx, Vy, p, T, n, and rD, in eight 

equations, (94)-(98), (102), (107), and (108). The object now is to reduce this system of 

equations to an equivalent set of dimensionless equations that can be analyzed using a relatively 

small number of parameters. 

4.3 Self-Similar Eulerian Equations. In this section, we convert the equations of the 

previous section to dimensionless forms. We define the following set of dimensionless 

variables: 

p = p/p0, p = p/p0, T = T/T0, n = n/n0, fD = rD /rD0, Vx = Vx / V0, and Vy = Vy / V0, 

where the baseline values are denoted by the subscript 0. There is no restriction on the baseline 

values. When the foregoing dimensionless variables are inserted into the system of equations of 

section 4.2, we obtain a set of dimensionless equations. The dimensionless continuity equation 

is 

|£+P0^ + P0i<pI>=E0öp»f>, (109) 
ax dx dy 

where 

x = -andy = ^, (110) 
L L 

V T        V r p _ V
O-

L
DO _ Y

O
1

DO (^^^\ 
o ~      T        ~ T A   B ' \liXJ L        LAp0 

Po 
E0 = 47tpLn0fD0 ^ (112) 
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T    =J22_ (113) 
XD0 A     B  ' 

Apo 

and 

t 
T =  

•'"DO 

The dimensionless momentum equations are 

and 

where 

JÜ2- 

and 

3 

The dimensionless energy equation becomes 
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(114) 

9(PTVx) , p 3(PTVX
2
) , r ^(PTVVVX) _  PK 

8P (115) 
3T °     3x °       3y °  ° dx 

3(PTVY) , p 5(PTVXVY) ,P 9(PTVY)_   PK   5P ni6) 
dx ox ay ay 

K0=-^ (117) 

pT=(p + ^). (118) 



_d_ 

dx 2 V2 
+ P0V. 

(^-7,\_-7l , CmTT0 

2 
pV(_v2+-^_-L) + K0P0V.(pV) = H0npB^,   (119) 

where 

-     r  d      -.   d 
V = i —+j—, 

dx      dy 
(120) 

Hn 
V, 2 

E0' (121) 

and 

PT 
:3,Po l-nr^(f^)-bp0p 

3pL 

Po 
(122) 

The dimensionless droplet equations are 

9(5) |r a(nVx)|r^(nVY)_0 

dx o     3 — dx dy 
(123) 

and 

Ml + P v ^ + PV ^ = -pB 

dx dx dy 
(124) 

Simplification of the dimensionless equations occurs by making the appropriate selections 

for the baseline parameters. This is where physical insight into the problem is of great value. 

There is a temptation to select values of pressure, temperature, and density at their initial values. 
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However, we know from experience that within a broad range of initial conditions, the response 

of liquid rocket systems and RLPG designs are essentially independent of the initial values of 

pressure, temperature, and density. Under these conditions, we are liberty to select 

p0, T0, and p0 to simplify the dimensionless equations. 

We select p0 and p0 to make P0 = 1 and E0 = 1. This gives 

fVr   ^1/B 

Po = 
'0XD0 

V   LA   J 

(125) 

Po = ^L^DO » (126) 

Kn = PO       _ (V0rD0) 
1/B (V0rD0) l/B 

0     p0V0
2     3(LA)1/BpLn0DD0     SCLA^p^ DO 

(127) 

and 

4TC 3 

'HDO ~ I1o'UDO _ n0    o   rD0 • 
(128) 

When the foregoing definitions are used, the dimensionless time now becomes 

TD0 is now given by 

T = - 
LD0 

(129) 

T    _  rDQ   — 
D°     Ap0

B~V0 

(130) 
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The baseline temperature, T0, is selected to satisfy the condition 

C T 
^4^ = 1. (131) 
v0 

This gives 

V2 

T0=-f. (132) 

When the foregoing definitions are used, the dimensionless time now becomes 

x = -J-, (133) 
T 
•"•DO 

where 

APo*     V0 

The new system of dimensionless equations now becomes 

dp   d(p%)   3(pVY)_^B^ 

TD0=-K = ^- <134> 

+ rv^_x1 + r^_v£ = 5-Bf,> (135) 

dx       dx ay 

d(PTVx) | 9(PTVX) | 9(PTVYVx)=   K  9P5 (136) 

dx dx By dx' 

45 



3(PTVY) . d(pTVxVY) , ^(PTVY)__^   9p  1 __ 1 -—-        _    JV0 , 
at ax ay ay 

(137) 

PT=(P+-T'nrD)' (138) 

u 
dx 

p(Iv2+T) + V» pV(^V'2+T) + K0V.(pV) = H0npBfD
2, (139) 

P=" 
pT 

=3,Po l-nr^(f^)-bp0p 
3pL 

^PoToR^ 

V   ru     / 

(140) 

9(5) ^(nVJ |a(nVY)_0> 

dx        dx By 
(141) 

and 

^)+vY^> + vv^ = -pB- 
dx dx 

x --    TY ay 
(142) 

By writing equation (140) in the form 

= PTQo 
P = ,      —3.  l-nr^TiD0-N0p 

(143) 

where 

N0=bp0=3bpL7iD0 (144) 
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and 

Q0 = 'poT0R^ 
f     T    A        Wl 1T2T>   \ LA 

\_  *0rD0 

3PLT1DO
V

O
R 

(145) 

we arrive at a system of eight equations, (135) to (142); eight dimensionless variables, 

p, pT, Vx, V , p, T, n, and fD; and five dimensionless constant parameters, Ko, Ho, rioo, N0, and 

QQ. Examination of r|D0 and N0 shows that we can eliminate one of these two since the 

covolume, b, is a constant and the liquid density is nearly constant. We keep T|D0 and eliminate 

N0. 

The solution for each of the variables (we use pressure as an example) can be expressed in 

the form 

x   y 
P = Pofptr>^~>T'K0'H0>TlDO>^o) ' (146) 

where 

Po = 
^0rD0 

LA 

V /B 

(147) 

and fp is a function determined from the solution of equations (135) to (142).   A different 

f function applies to each of the eight variables. 

4.4 Confirmation of Scaling Relationships. Systems that have the same values of the 

dimensionless constant parameters Ko, Ho, "Ho, and Qo will have similar time and space behavior 

when expressed in dimensionless variables. Consistency between the current Eulerian 

formulation and the Lagrangian formulation used in the code allows the examination of pressure 

oscillations to be made in the relatively limited dimensional space of only four parameters. 
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While the dimension space of the problem has been reduced, the relationships between the 

variables are still extremely complicated. However, analysis of the results indicates an 

interesting scaling relation. Suppose the dimensions of the chamber (radius, length, radius of 

inlet, radius of outlet) are increased by a constant factor. If either the radius of the injected 

droplets is increased by the factor or the pre-exponential term, A, is decreased by the factor, the 

normalizing factor, p0, is unchanged. The nondimensional time, x, includes the constant, L, so 

the time scale will decrease by this factor. The other nondimensional quantities in the function, 

fp , are unchanged. The injection velocity is left unchanged, so the mass flow increase is 

proportional to the vent area increase. The pressure should be the same, except for the change in 

the time scale. 

This scaling law for the pressure seems reasonable physically. If the dimensions are 

increased, pressure waves will take longer to reach the walls of the chamber and return to the 

combustion site near the injector. If the combustion rate is decreased proportionally, the pressure 

waves will receive the same amount of energy at each iteration. 

To check this result, numerical simulations were performed using the 2-D RLPG code. The 

baseline simulation for this fixture assumes the jet breaks up into 200-nm-diameter droplets. A 

pressure trace from the simulation at the top wall is shown in Figure 4. Very large oscillations 

are generated. The Fourier transform is shown in Figure 5. The largest frequency is a first radial 

mode (around 26 kHz). With the chamber represented as a cylinder (ignoring the actual nozzle 

shape at the exit) there is a first longitudinal mode (around 10 kHz). There are also smaller 

overtones. 

Simulation was performed again with all the physical dimensions doubled. The size of the 

injected droplets is also doubled. The pressure at the middle of the top wall is shown in Figure 6. 

Note that the time scale has been changed. The Fourier transform is shown in Figure 5. The 

magnitudes are almost the same as the baseline case, while the frequencies are cut in half, hi 

Figure 7, the frequencies of the doubled case are cut in half. There is no noticeable difference 

from the baseline case when the time scaled is thus adjusted. The same answer is obtained if the 
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pre-exponential is cut in half and the droplet diameter is left at 200 \im.  The model produces 

almost exactly the answer predicted by the dimensional analysis. 

This result only holds if all the conditions are applied. For instance, suppose all the 

dimensions are doubled except for the length, which is left the same. The longitudinal mode, as 

expected, has a different frequency. But the radial mode is also very different in amplitude. 

Also, if the dimensions are doubled but the droplet diameter is left at 200 pm, a completely 

different answer is computed. 

Standard correlations for injected droplet size show that the size depends primarily on the 

injection velocity and the ratio of the gas-to-liquid density [5]. So, if a scale up of the test fixture 

were constructed, we would expect that the injected droplet diameter would be about the same. 

This implies that, to actually construct a scale of a fixture that has the same magnitude of 

pressure oscillations as the original fixture, either the droplet diameter must be controlled or the 

burning rate of the propellant must be modified. 

5. RLPG Considerations 

The dimensionless equations for a gun simulation have not yet been derived. The problem is 

essentially transient and much more complicated than the aforementioned test fixture. However, 

based on physical intuition, some simulations were made to check whether the scaling rule still 

holds for gun conditions. 

Figure 8 shows the pressure at the middle of the top wall of the chamber for a 30-mm gun 

simulation. The injected droplet diameter is now a function of time rather than a constant. The 

dimensions were then doubled (60-mm gun), and the injected droplet diameter profile was also 

doubled. Figure 9 shows the result. Again, note the different time scale. The curves are very 

similar. The Fourier transforms are almost the same for any time window during the firing cycle. 
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6. Intact-Core Model 

So far, all the simulations shown have assumed that the injected liquid instantaneously breaks 

up into droplets. This is a simplification of a much more complicated process. A number of 

other jet breakup models have also been considered [16]. The most useful has been to assume 

that most of the liquid is in a noncombusting intact core. Droplets stripped off the core are small, 

on the order of 10 [jm. The length of the intact core depends on the ratio of the gas-to-liquid 

density and the diameter of the injector. So, the intact-core length should scale with the size of 

the fixture. 

A number of simulations were performed using the intact-core model. Consider a 30-mm 

gun simulation. The length of the intact core and the size of the small combusting droplets 

outside the core vary through the firing cycle. This case was then scaled up to a 60-mm gun. If 

the length of the intact core and the size of the drops outside the core are doubled, the scaling law 

still holds. The pressure oscillations are the same magnitude, with the time scale doubled. 

However, if the small drops are kept the same size as in the 30-mm simulation, the solution is 

very different in character. It was expected that, once the droplets became small, the exact size 

would not be important. This turned out not to be the case. Thus, the scaling law for the 

intact-core model is essentially the same as for the droplet model. 

7. Conclusion 

Dimensional analysis has been applied to the equations governing RLPGs. A scaling law 

that relates fixtures of different sizes has been derived. The numerical model agrees almost 

exactly with the scaling law. This increases our confidence both in the dimensional analysis and 

the numerical accuracy of the computational fluid dynamics code. 

It is useful to be able to do experiments in a smaller scale fixture. Unfortunately, the scaling 

rule derived here indicates that either the injected droplet size or the burn rate also has to be 

modified. The droplet size is not under our control for practical gun injectors, and the droplet 

56 



size is expected to be about the same for fixtures that operate at similar pressures. There has 

been some work in developing propellant with a faster burn rate [17]. However, the burn rate 

cannot be controlled with any precision. 

It has long been noticed that pressure oscillations in 155-mm guns are very different in 

character than oscillations in 30-mm guns. Even when the same modes occur, the magnitudes 

are different. The present work indicates that this should, in fact, be expected. While we can 

scale the physical dimensions of the 30-mm gun, we cannot control the droplet size or the burn 

rate of the propellant. 
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